
WEEK SEVEN: CALCULATIONS IN CHAPTER 8
PRESENTED BY KAREN AND SCRIBED BY STEVE

1. NOTATIONS AND SETUP

Recall our previous set-up:

• F (z) = G(z)/H(z); for us G and H are polynomials, but they can, in fact, be analytic functions

provided H satisfies some conditions;

• V = V(H) = the variety of H , in Cd;

• amoeba(H) = {<(log z) : H(z) = 0} in Rd, where

< log(z1, . . . , zd) = (log |z1|, . . . , log |zd|);

• B, a connected component of Rd \ amoeba(H). By the chapter on amoeba’s, such components are

in 1-to-1 correspondence with Laurent Series Expansions of 1/H (and hence of F );

• We let F (z) =
∞∑

r=−I
zrz

r be the Laurent expansion of F which converges in B.

Now, we pause for an example of an amoeba.

Example 1. We calculate amoeba(1− x− y). If we set 1− x− y = 0 then < log(x, y) = (log |x|, log |1− x|). We

consider various cases.

(a) (x ∈ R, x ≥ 2) Then log |x| = log(x) > 0 and log |1 − x| = log(x − 1) ≥ 0, so our amoeba is in the first

quadrant. If x = 2 then we get the x-intercept (log 2, 0). As x gets large, we converge to x = y.

(b) (x ∈ R, 1 < x < 2) Here, |1 − x| takes on values between 0 and 1, so we are in the fourth quadrant. As

1− x→ 0 as x→ 1, the y−axis is an asymptote of the function.

(c) By symmetry, we have the same results as above if we exchange x and y.

(d) Finally, we check if (0, 0) is in the amoeba (i.e., if the amoeba is the inside or the outside of the curves found

above). It’s in the amoeba iff |x| = 1 and |1 − x| = 1 has a solution. But this is asking if two circles with

radius 1 and centers 1 unit apart intersect in the complex plane intersect – which they do (in fact, twice).

(e) The amoeba crosses the line y = x when log |x| = log |1 − x|, i.e., when x = 1/2. This gives the point

(− log 2,− log 2) in the amoeba.

Putting all this together gives the following picture:
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FIGURE 1. The amoeba of 1− x− y

What about the corresponding Laurent expansions? The power series solution at 0 converges for |x+ y| < 1 (plus

possibly on the boundary). If x, y are real and positive then both are at most 1, so they end up in the third quadrant

after taking the < log map. Note also that the power series part will always contain the ray on x = y starting from

(−r,−r) for some sufficiently large r as this corresponds to approaching the origin under the < log map.

We also had the following set-up:

• r ∈ Nd an index;

• The Cauchy Integrand ω = z−r−1F (z)dz, analytic inM = (C∗)d \ V ;

• r̂ = r/|r|, with |r| = r1 + · · ·+ rd being the l1 norm;

• T (x) = exp(x+ i · Rr).

2. WHAT DID SOPHIE DO?

Before we talk about asymptotics, we need to talk about exponential growth. Because of oscillations,

given r̂∗ we define

β(r̂∗) = inf
N

lim sup
r →∞
r̂ ∈ N

log |ar|
|r|

 ,

where N runs over a system of neighbourhoods whose intersection is {r̂∗}.

Example 2. Last time we looked at

ars =

(
r + s− 1

s

)
−
(
r + s− 1

r

)
.

Then F (x, y) =
∑
aijx

iyj = x−y
1−x−y , the function whose amoeba we studied above. Letting r̂∗ = (1/2, 1/2) we can

calculate the Taylor expansion of ar+ε1,r−ε2 in Maple to first order in ε1, ε2. Taking r →∞, Maple gives the limit as

log 2, so the exponential growth is 2.

Another thing we saw last time:

Definition 1. Given r ∈ Rd, we let B∗(r) = inf(−r · x, x ∈ B).
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Which gave

Proposition 2. β(r̂∗) ≤ β∗(r̂∗)

Proof. By the definition of
∑
arz

r, we have that if z = exp(x+ iy) for x ∈ B and any y ∈ Rd, then the series

converges. In particular, |arzr| → 0 for every r →∞. But

|zr| = |z1|r1 · · · |zd|rd = ex·r,

so for all x ∈ B and ε > 0 sufficiently small |ar| < εe−r·x. This implies log |ar| < −r · x for all but finitely

many r, so
log |ar|
|r|

≤ inf(−r̂ · x),

for all but finitely many r. Taking the infimum over a system of neighbourhoods whose intersection is {r̂∗}
gives the final result. �

Then Sophie proved some results about Morse Theory and defined critical points (we had a definition of

critical(r) as the set of solutions to the critical point equations with respect to the direction r̂).

3. MINIMAL POINTS

We refine the notion of critical points to get closer to those that actually contribute to the asymptotics.

3.1. Minimal Points. Critical points on the boundary z ∈ ∂B are called minimal points, and the set of them

is denoted minimal(r̂∗). By definition, minimal(r̂∗) ⊂ critical(r̂∗) – the idea is that the minimal points are

the only ones that can actually contribute to the asymptotics.

3.2. Locally Oriented Points. There is a further refinement of minimal points – these points are called

locally oriented, and the set of them is denoted local(r̂∗). They are defined in Chapter 11, but we give an

example here.

Example 3. Let H = L1L2 = (3− x− 2y)(3 + 2x+ y).
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identical to amoeba(3 � 2x � y) because the amoeba of F(�x,�y) is the same
as the amoeba of F(x, y). The component B of Rd \ amoeba(H) containing the
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Figure 8.4 The zero set of (3 � x � 2y)(3 + 2x + y) from Example 8.4.1 and the
OPS component.

negative quadrant corresponds to the ordinary power series. An enlargement
of this component is shown at the bottom of Figure 8.4. When x = (0, 0), the
linearization of f at x is just `1`2 := (x + 2y)(2x + y). The zero set of which
contains the two rays forming the boundary of

tanx(B) = {(u, v) 2 R2 : 2u + v < 0 and u + 2v < 0} .

There are two points z 2 VH in Re log�1(0, 0), namely (1, 1) and (�1,�1).
The first is in VL1 and the second is in VL2 . Locally, if H were equal to just
L1, then (1, 1) would be a critical point, the cone tanxmin (B) there would be
the halfspace {(u, v) 2 R2 : u + 2v < 0} and normalxmin (B) would be the ray
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FIGURE 2. The varieties of L1 and L2 (restricted to the real plane) and the amoeba of H .

Now, (1, 1) ∈ L1 and (−1,−1) ∈ L2, and < log(1, 1) = (0, 0) = < log(−1,−1). Thus, < log VL1
and < log VL2

intersect at (0, 0), but there is no corresponding intersection on the varieties themselves! Thus, although (0, 0) is a

minimal point, we would not call it a locally oriented point.
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4. THE GLUING DATA

Finally, in Chapter 8.5 the text describes the quasi-local cycles by describing the topology near the critical

points. Let M = Cd \ V and S = a stratum of V . For x ∈ S, locally there is a product structure; i.e., for N a

sufficiently small neighbourhood of x in B,N is diffeomorphic to N ×Bk, where k is the real dimension of

B, Bk denotes the k−ball, and N is a normal slice N ∩ P , where P is the plane normal to S at x.
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Figure 8.5 A configuration of three collinear planes and its normal slice.

special case, the definition boils down to

T-data := (Bk, @Bk) .

This is realized as the downward subspace at x: there are orthonormal coor-
dinates in which the quadratic approximation to h near x is diagonal with k
positive and k negative directions and we may take Bk to be a patch tangent to
the k-dimensional subspace of negative directions. The category of topological
pairs has a product, namely (A, B) ⇥ (C,D) := (A ⇥ B, A ⇥ D [ B ⇥ C). The
attachment is a product, in this sense, of the normal and tangential Morse data.

Theorem 8.5.3 (Fundamental decomposition of stratified Morse theory) Let
M be the complement of a stratified space V with smooth, harmonic height
function h. Let S be a stratum of dimension k with an isolated critical point
x 2 S . Assume the function h is Morse: that is, the critical values are distinct,
the critical points are nondegenerate and the tangency assumption is satisfied
in Definition C.2.1. Then for su�ciently small " > 0,

�Mc+",Mc�"� ' N-data⇥ T-data =
⇣
Ñ, Ñ \Mc�"⌘ ⇥

⇣
Bk, @Bk

⌘
. (8.5.1)

FIGURE 3. An example of three colinear planes and their normal slice.

Let Ñ = U ∩ P , where U is a neighbourhood of x in M . Then for the cases the book cares about

(M c+ε,M c−ε) ' (N − data)× (T − data) = (Ñ , Ñ ∩M c−ε)× (Bk, ∂Bk),

where c is the critical level for the critical point z.

The quasi-local cycles are the cycles viewed on the T -data part – (Bk, ∂Bk) – so

(2πi)dar ∼
∫
C∗

ω−r−1F (ω)dω

∼
∑

z∈contrib

∫
C∗(z)

ω−r−1F (ω)dω

∼
∑

z∈contrib

∫
C(z)

(∫
N−data

ω−r−1F (ω)dω

)
.
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