WEEK SEVEN: CALCULATIONS IN CHAPTER 8 PRESENTED BY KAREN AND SCRIBED BY STEVE

1. Notations and Setup

Recall our previous set-up:

- $F(z)=G(z) / H(z)$; for us G and H are polynomials, but they can, in fact, be analytic functions provided H satisfies some conditions;
- $V=\mathbb{V}(H)=$ the variety of H, in \mathbb{C}^{d};
- $\operatorname{amoeba}(H)=\{\Re(\log z): H(z)=0\}$ in \mathbb{R}^{d}, where

$$
\Re \log \left(z_{1}, \ldots, z_{d}\right)=\left(\log \left|z_{1}\right|, \ldots, \log \left|z_{d}\right|\right)
$$

- B, a connected component of $\mathbb{R}^{d} \backslash \operatorname{amoeba}(H)$. By the chapter on amoeba's, such components are in 1-to-1 correspondence with Laurent Series Expansions of $1 / H$ (and hence of F);
- We let $F(z)=\sum_{r=-I}^{\infty} z_{r} z^{r}$ be the Laurent expansion of F which converges in B.

Now, we pause for an example of an amoeba.
Example 1. We calculate amoeba $(1-x-y)$. If we set $1-x-y=0$ then $\Re \log (x, y)=(\log |x|, \log |1-x|)$. We consider various cases.
(a) $(x \in \mathbb{R}, x \geq 2)$ Then $\log |x|=\log (x)>0$ and $\log |1-x|=\log (x-1) \geq 0$, so our amoeba is in the first quadrant. If $x=2$ then we get the x-intercept $(\log 2,0)$. As x gets large, we converge to $x=y$.
(b) $(x \in \mathbb{R}, 1<x<2)$ Here, $|1-x|$ takes on values between 0 and 1 , so we are in the fourth quadrant. As $1-x \rightarrow 0$ as $x \rightarrow 1$, the y-axis is an asymptote of the function.
(c) By symmetry, we have the same results as above if we exchange x and y.
(d) Finally, we check if $(0,0)$ is in the amoeba (i.e., if the amoeba is the inside or the outside of the curves found above). It's in the amoeba iff $|x|=1$ and $|1-x|=1$ has a solution. But this is asking if two circles with radius 1 and centers 1 unit apart intersect in the complex plane intersect - which they do (in fact, twice).
(e) The amoeba crosses the line $y=x$ when $\log |x|=\log |1-x|$, i.e., when $x=1 / 2$. This gives the point $(-\log 2,-\log 2)$ in the amoeba.
Putting all this together gives the following picture:

Figure 1. The amoeba of $1-x-y$

What about the corresponding Laurent expansions? The power series solution at 0 converges for $|x+y|<1$ (plus possibly on the boundary). If x, y are real and positive then both are at most 1 , so they end up in the third quadrant after taking the $\Re \log$ map. Note also that the power series part will always contain the ray on $x=y$ starting from $(-r,-r)$ for some sufficiently large r as this corresponds to approaching the origin under the $\Re \log$ map.

We also had the following set-up:

- $r \in \mathbb{N}^{d}$ an index;
- The Cauchy Integrand $\omega=z^{-r-1} F(z) d z$, analytic in $\mathcal{M}=\left(\mathbb{C}^{*}\right)^{d} \backslash V$;
- $\hat{r}=r /|r|$, with $|r|=r_{1}+\cdots+r_{d}$ being the l_{1} norm;
- $T(x)=\exp \left(x+i \cdot \mathbb{R}^{r}\right)$.

2. What did Sophie Do?

Before we talk about asymptotics, we need to talk about exponential growth. Because of oscillations, given $\hat{r_{*}}$ we define

$$
\bar{\beta}\left(\hat{r_{*}}\right)=\inf _{\mathcal{N}}\left(\limsup _{\substack{r \rightarrow \infty \\ \hat{r} \in \mathcal{N}}} \frac{\log \left|a_{r}\right|}{|r|}\right)
$$

where \mathcal{N} runs over a system of neighbourhoods whose intersection is $\left\{\hat{r}_{*}\right\}$.
Example 2. Last time we looked at

$$
a_{r s}=\binom{r+s-1}{s}-\binom{r+s-1}{r}
$$

Then $F(x, y)=\sum a_{i j} x^{i} y^{j}=\frac{x-y}{1-x-y}$, the function whose amoeba we studied above. Letting $\hat{r}_{*}=(1 / 2,1 / 2)$ we can calculate the Taylor expansion of $a_{r+\epsilon_{1}, r-\epsilon_{2}}$ in Maple to first order in $\epsilon_{1}, \epsilon_{2}$. Taking $r \rightarrow \infty$, Maple gives the limit as $\log 2$, so the exponential growth is 2 .

Another thing we saw last time:
Definition 1. Given $r \in \mathbb{R}^{d}$, we let $B^{*}(r)=\inf (-r \cdot x, x \in B)$.

Which gave
Proposition 2. $\bar{\beta}\left(\hat{r_{*}}\right) \leq \beta^{*}\left(\hat{r}_{*}\right)$
Proof. By the definition of $\sum a_{r} z^{r}$, we have that if $z=\exp (x+i y)$ for $x \in B$ and any $y \in \mathbb{R}^{d}$, then the series converges. In particular, $\left|a_{r} z^{r}\right| \rightarrow 0$ for every $r \rightarrow \infty$. But

$$
\left|z^{r}\right|=\left|z_{1}\right|^{r_{1}} \cdots\left|z_{d}\right|^{r_{d}}=e^{x \cdot r},
$$

so for all $x \in B$ and $\epsilon>0$ sufficiently small $\left|a_{r}\right|<\epsilon e^{-r \cdot x}$. This implies $\log \left|a_{r}\right|<-r \cdot x$ for all but finitely many r, so

$$
\frac{\log \left|a_{r}\right|}{|r|} \leq \inf (-\hat{r} \cdot x)
$$

for all but finitely many r. Taking the infimum over a system of neighbourhoods whose intersection is $\left\{\hat{r}_{*}\right\}$ gives the final result.

Then Sophie proved some results about Morse Theory and defined critical points (we had a definition of $\operatorname{critical}(r)$ as the set of solutions to the critical point equations with respect to the direction $\hat{r})$.

3. Minimal Points

We refine the notion of critical points to get closer to those that actually contribute to the asymptotics.
3.1. Minimal Points. Critical points on the boundary $z \in \partial B$ are called minimal points, and the set of them is denoted minimal $\left(\hat{r}_{*}\right)$. By definition, minimal $\left(\hat{r}_{*}\right) \subset \operatorname{critical}\left(\hat{r}_{*}\right)$ - the idea is that the minimal points are the only ones that can actually contribute to the asymptotics.
3.2. Locally Oriented Points. There is a further refinement of minimal points - these points are called locally oriented, and the set of them is denoted local $\left(\hat{r}_{*}\right)$. They are defined in Chapter 11, but we give an example here.

Example 3. Let $H=L_{1} L_{2}=(3-x-2 y)(3+2 x+y)$.

Figure 2. The varieties of L_{1} and L_{2} (restricted to the real plane) and the amoeba of H.
Now, $(1,1) \in L_{1}$ and $(-1,-1) \in L_{2}$, and $\Re \log (1,1)=(0,0)=\Re \log (-1,-1)$. Thus, $\Re \log V_{L_{1}}$ and $\Re \log V_{L_{2}}$ intersect at $(0,0)$, but there is no corresponding intersection on the varieties themselves! Thus, although $(0,0)$ is a minimal point, we would not call it a locally oriented point.

4. THE GLUING DATA

Finally, in Chapter 8.5 the text describes the quasi-local cycles by describing the topology near the critical points. Let $M=\mathbb{C}^{d} \backslash V$ and $S=$ a stratum of V. For $x \in S$, locally there is a product structure; i.e., for \mathcal{N} a sufficiently small neighbourhood of x in B, \mathcal{N} is diffeomorphic to $N \times B_{k}$, where k is the real dimension of B, B_{k} denotes the k-ball, and N is a normal slice $\mathcal{N} \cap P$, where P is the plane normal to S at x.

$$
V=\mathrm{Nx} \mathrm{~S}
$$

Figure 3. An example of three colinear planes and their normal slice.
Let $\tilde{N}=U \cap P$, where U is a neighbourhood of x in M. Then for the cases the book cares about

$$
\left(M^{c+\epsilon}, M^{c-\epsilon}\right) \simeq(N-\text { data }) \times(T-\text { data })=\left(\tilde{N}, \tilde{N} \cap M^{c-\epsilon}\right) \times\left(B_{k}, \partial B_{k}\right),
$$

where c is the critical level for the critical point z.
The quasi-local cycles are the cycles viewed on the T-data part - $\left(B_{k}, \partial B_{k}\right)$ - so

$$
\begin{aligned}
(2 \pi i)^{d} a_{r} & \sim \int_{C_{*}} \omega^{-r-1} F(\omega) d \omega \\
& \sim \sum_{z \in \text { contrib }} \int_{C_{*}(z)} \omega^{-r-1} F(\omega) d \omega \\
& \sim \sum_{z \in \text { contrib }} \int_{C(z)}\left(\int_{N-\text { data }} \omega^{-r-1} F(\omega) d \omega\right) .
\end{aligned}
$$

